

Base Resistance Contributions in SiGe HBT Devices

F. Stein

Advisors ST: N. Derrier, D. Céli

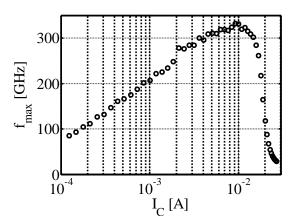
Advisor IMS: C. Maneux

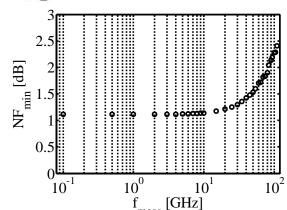
Outline ___

Base Resistance Contributions in SiGe HBT Devices

- Motivation why it is important to accurately determine R_R
- Components of the base resistance how to partition R_R
- Dual base tetrode device description of test structure
- Measurement conditions how to perform on wafer measurements
- Extraction method how to obtain R_B and its components
 - Extraction results using recent bipolar technology application to B5T
- Process split results and variation encountered errors & statistics
- Extraction results using TCAD simulation method robustness
- Conclusion

Motivation 3


why it is important to accurately determine R_{R}

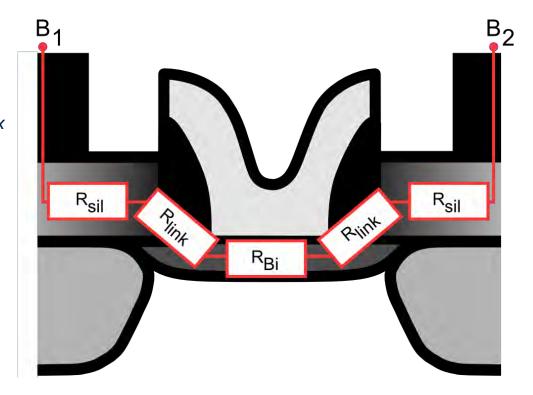

 resistances to be determined before model extraction of currents and AC characteristics

 R_B has significant impact on device speed (f_{max}) and noise behaviour (NFmin)

$$f_{\rm max} \approx \sqrt{\frac{f_T}{8\pi R_B C_{BC}}}$$

\w
$$f_T = \frac{g_m}{2\pi(C_\pi + C_\mu)}$$

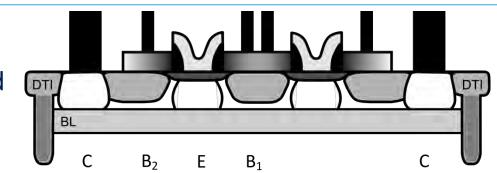
HICUM L2

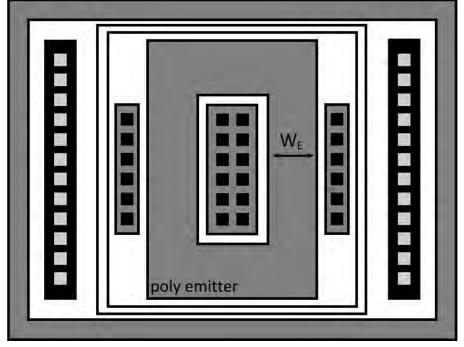

equivalent circuit

Components of the base resistance

how to partition $R_{\rm B}$

- base resistance is composed of the intrinsic base resistance R_{Bi} and the extrinsic base resistance R_{Bx}
- intrinsic: bias dependent internal base sheet resistance r_{SBi}
- extrinsic: from the inner base (emitter window edge) to the base contact
 - including involved contact resistance (base link region) below the spacer



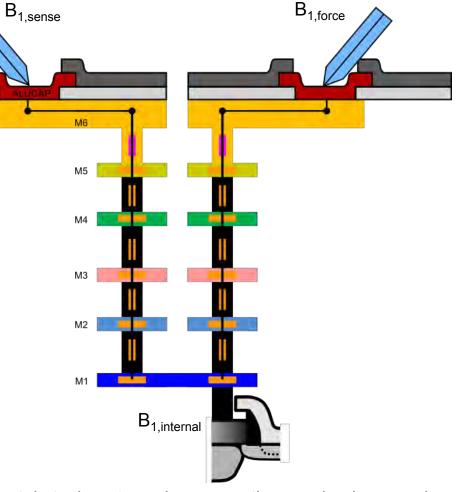


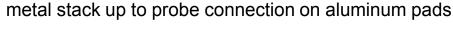
Dual base tetrode device

description of test structure

- dual base test structures present an improved approach compared to classical pinch-resistor structures (as presented in [1])
- extract the sheet resistance value of each component using simple yet accurate DC measurements
- two base terminals B1 and B2 independently accessible
- ring emitter structure to electrically separate the two bases

Dual base tetrode device

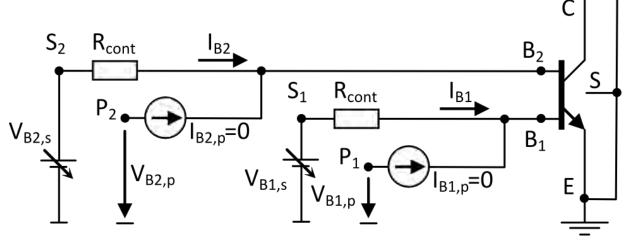

description of test structure


 improvements over the original device structure include kelvin type connection to cancel out contact resistances

 independent force and sense ports shorted in M1 layer improve measurement accuracy

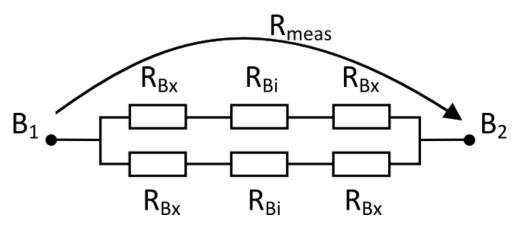
usually $>2\Omega$ contact resistance per probe

 increased measurement complexity using 6 probes for biasing of test structure



Dual base tetrode device

description of test structure


 simplified equivalent circuit due to kelvin type connection

equivalent circuit of tetrode structure with individual base contacts

 resistance contributions measured suitable for xtr

$$R_{meas} = \frac{V_{B2,p} - V_{B1,p}}{(|I_{B1}| + |I_{B2}|)/2}$$
$$= R_{Bx} + R_{Bi}/2$$

resistance contributions measured between B1 and B2

Measurement conditions -

how to perform on wafer measurements

- forcing probe (P) ports to zero current to ensure proper kelvin measurement and measurement of applied bias at M1 level
- differential bias applied on force port with constant ΔV_B (40mV)

$$\Delta V_B = V_{B2,s} - V_{B1,s}$$

- bias conditions for V_{BE}: -0.5 .. 0.5V
 - avoid breakdown in reverse bias
 - avoid active BE junction in forward mode
- measured resistance calculated using voltage of floating probes (P)

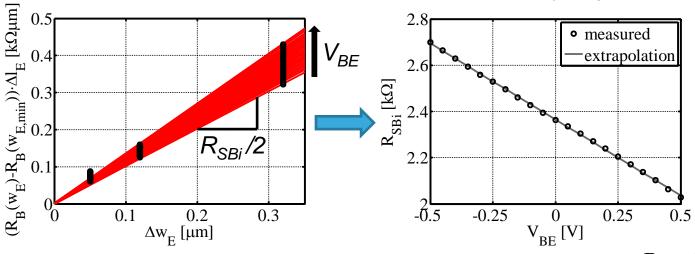
$$R_{meas} = \frac{V_{B2,p} - V_{B1,p}}{(|I_{B1}| + |I_{B2}|)/2} \text{ \w I}_{probe} = 0$$

• the two contributions measured in each structure (R_{Bi} and R_{Bx}) are best seen in the equivalent circuit (two parallel series resistances)

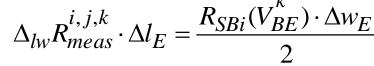
how to obtain R_B and its components

- extraction is based on geometry scaling approach
- R_{Bx} is assumed to be constantfor a variation of the device length and independent of bias conditions $[R_{Bx} = f(I_F)]$
- intrinsic base resistance is a function of all factors $[R_{Bi} = f(w_F, I_F, V_{BF})]$

$$R_{meas}^{i,j,k} = R_{Bx}(l_E^j) + \frac{R_{Bi}(w_E^i, l_E^j, V_{BE}^k)}{2}$$
 as in [2]


- two lengths per emitter width structure to cancel out the corner effects
- subtraction of the current of two structures gives the current of a inner, two-dimensional structure with an effective device length of ΔI_F

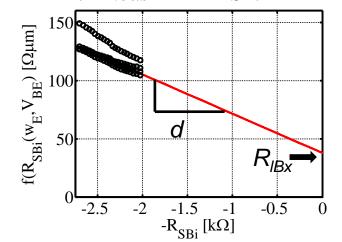
$$R_{meas}^{i,j,k} \cdot \Delta l_E = \frac{R_{sBi}(V_{BE}^k) \cdot (w_E^i - 2d)}{2} + R_{Bx} \cdot \Delta l_E$$

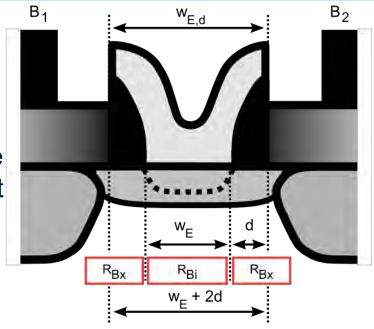


how to obtain R_B and its components

- $R_{meas}\Delta I_F$ curve may be normalized by a w_F reference structure
- smallest w_F structure used for suppression of undesired corner effects
- deduction of this reference yields a corrected $\Delta_{lw}R_{meas}$ normalized by ΔI_F versus a relative emitter width Δw_F
 - no need to be corrected by the electrical emitter width (compensation by d)

linear regression must cross the origin



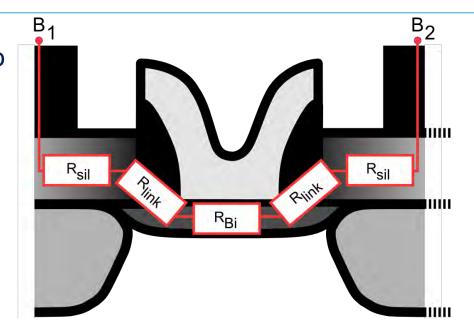


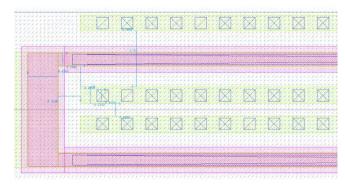
how to obtain R_B and its components

- compensate for parasitic corner effects and layout by electrical intrinsic base resistance width with $w_{E,eff} = w_{E,d}$ -2d
- extraction from normalized measured base resistance versus negative bias dependent internal base resistance

$$f(R_{SBi}) = R_{SBi}(V_{BE}^{k}) \cdot d + R_{LBx} = \dots$$
$$\dots = \Delta_{l} R_{meas}^{i,j,k} \Delta l_{E} - R_{SBi}(V_{BE}^{k}) \cdot w_{E} / 2$$

$R_{SBi0}[k\Omega]$	d [nm]	$R_{IBx}[\Omega \cdot \mu m]$
2.37	-35.6	36.8

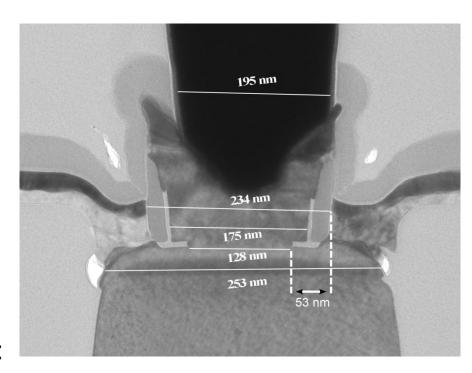



how to obtain R_B and its components

- external resistance contributions to determine:
 - silicided external base region: R_{sil}
 - base-link region below spacer: R_{link}
- partitioning of external contribution using information from DRM and layout

$$R_{Bx} = R_{sil} + R_{link}$$

- DRM process information: sheet resistance of silicided $10\Omega/\Box$
- w_{sil} = 335nm (from layout)


cross section & layout view of tetrode

how to obtain R_B and its components

- determining spacer information from TEM imaging w_{link}=53nm
- $R_{I,link} = R_{IBx} R_{I,sil} = 33.45 \Omega \mu m$
- $R_{slink} = 631\Omega/\Box$

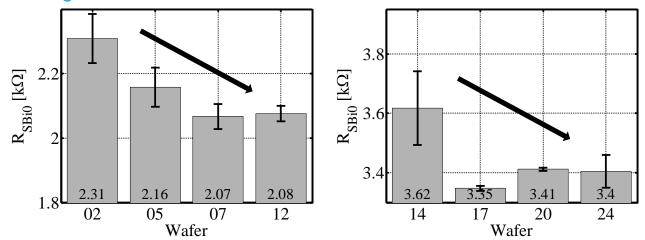
- supplemental information from TEM imaging for device simulation:
 - difference of drawn dimensions and actual dimensions on silicon of process

cross section of SiGe HBT with $w_F = 0.18 \mu m$ obtained from TEM imaging analysis

Process split results and variation 14

encountered errors & statistics

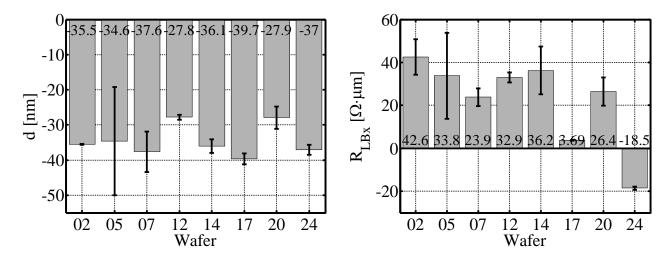
- extrapolation of the extrinsic base resistance times unit length R_{IBx} as well as the geometry correction d is performed far from the origin
- small measurement errors or abnormalities in geometry scaling may yield unphysical extraction results
- idea to study the impact of die-to-die variation and quantify uncertainty caused by the extraction routine
- technology parameter variation in process split served for trial
 - measurement and automated extraction on 42 dies per process split


Base width	5nm (reference)			
T _{anneal} [°C]	-	1010	1025	1040
Wafer	W02	W05	W07	W12
Base width	3nm (thir	3nm (thin base)		
T _{anneal} [°C]	-	1010	1025	1040
Wafer	W14	W17	W20	W24

Process split results and variation 15

encountered errors & statistics

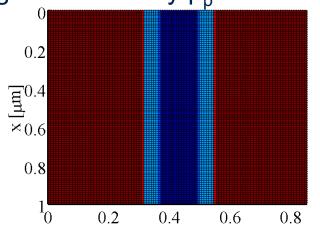
- measurement and automated extraction on 42 dies per process split
 - average value with the standard deviation for each wafer

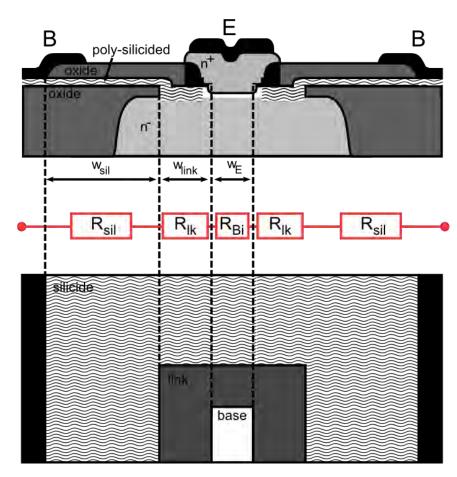

- extracted zero-bias base sheet resistance (R_{SBio}) is found to be highly increased for the thin base profile
- determination of R_{SBi} seems robust and yields feasible results

Process split results and variation 16

encountered errors & statistics

 questionable results obtained for geometry correction and extrinsic base resistance R_{IBX}


• possibility of unphysical (negative) resistance value

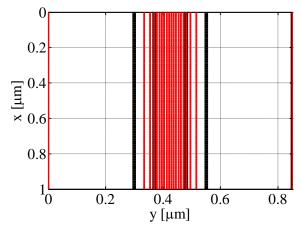


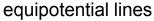
method robustness

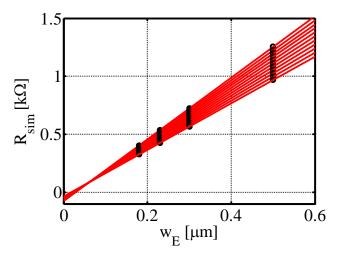
- 1D numerical device simulation of tetrode structures [3]
- device structure according to layout combined with additional information on spatial dimensions from TEM imaging

 variable sheet resistance modeled through hole mobility μ_p

cross section & top view of one side of the tetrode

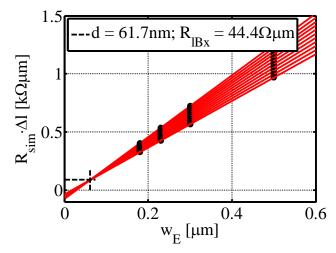


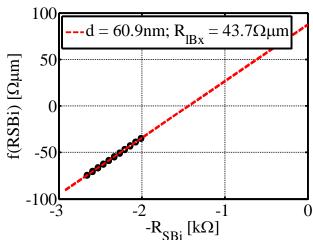

method robustness


- simulation vs. bias for different device geometries according to silicon specifications of B5T device generation
- application of extraction routine to simulated data
- structure simulated with extracted average values of process split W02

$R_{SBi0}[k\Omega/\Box]$	$R_{Ssil}\left[\Omega/\square\right]$	$R_{Slink}[\Omega/\Box]$
2.37	10	740

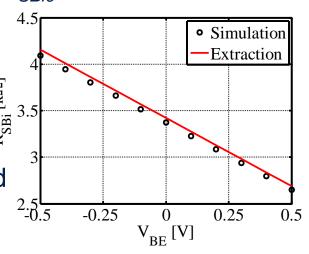
 first trial with given electrical dimensions from DRM [$w_{E,d}$ = 0.18, 0.23, 0.3, 0.5 µm]

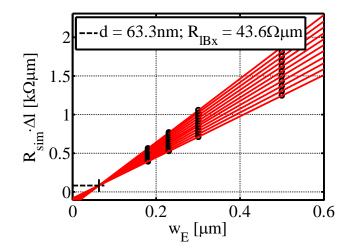


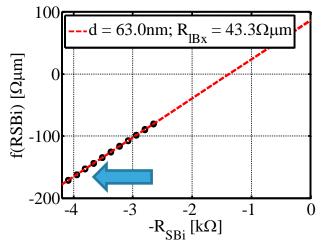

method robustness

extraction result yields expected quantities:

	$R_{SBi0}[k\Omega]$	d [nm]	$R_{IBx}[\Omega \cdot \mu m]$
input	2.37	53	42
xtr	2.33	61	44

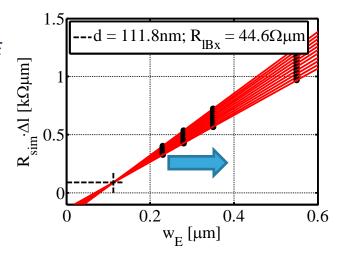

method robustness


extraction result for case of W14:

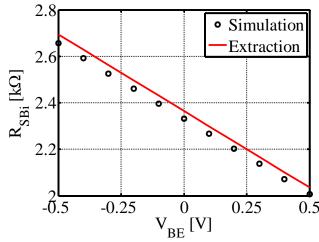

	$R_{SBi0}[k\Omega]$	d [nm]	$R_{IBx}[\Omega \cdot \mu m]$
input	3.42	53	42
xtr	3.37	63	43

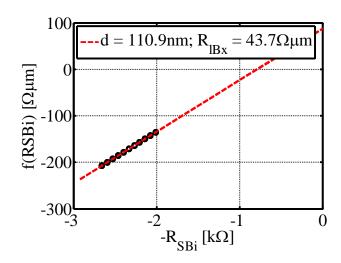
• even though the R_{SBiO} value is about 50%

larger (thus further from the origin) the extraction result is in accordance with the expected results

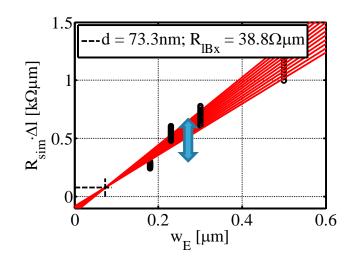


method robustness

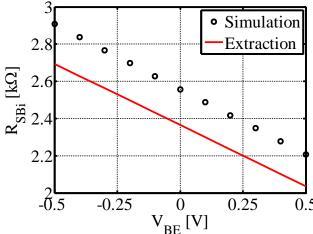

- wrong measure for emitter window width w_E
 - constant offset of $\Delta w_F = 50$ nm

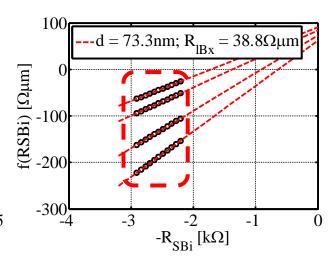

	$R_{SBi0}[k\Omega]$	d [nm]	$R_{IBx}[\Omega \cdot \mu m]$
input	2.37	53	42
xtr	2.33	111	44

- method efficiently corrects the emitter
 - window width difference that was added intentionally



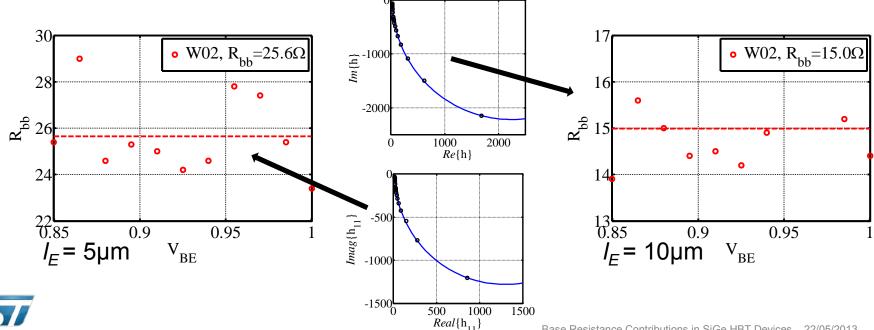
method robustness

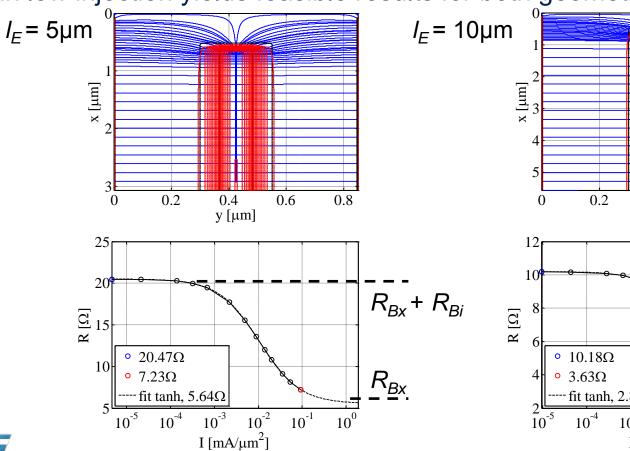

- Random variation of measured resistance
 - intentionally induced 'noise' on R_{meas}

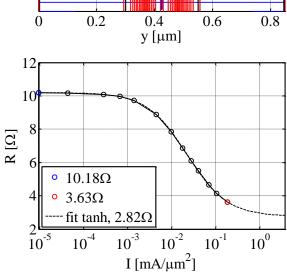

	$R_{SBi0}[k\Omega]$	d [nm]	$R_{IBx}[\Omega \cdot \mu m]$
input	2.37	53	42
xtr	2.56	73.3	39

• f(RSBi) vs. –R_{SBi} curves not superimposed anymore

 impact on emitter window width extraction as well as R_{SBiO} value

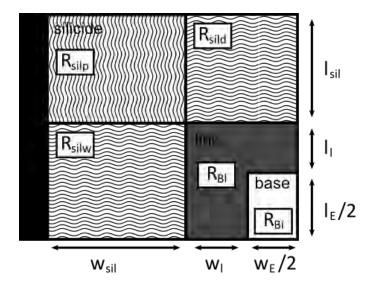


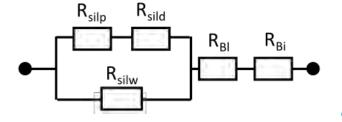

method robustness


- simulation of 2D device structure to compare results with RB extraction from semi-circle method [4, 5, 6] on RF msmt structure for $W_F = 0.18 \mu \text{m}$ and $I_F = 5 \mu \text{m}$ as well as $I_F = 10 \mu \text{m}$
- limited resolution of S-parameter based approach
 - impact of self heating at high current to be taken into account [T↑ => R↑]

method robustness

 total base resistance obtained from simulation of 2D device structure in low injection yields feasible results for both geometries





method robustness

comparison with calculated resistance using extracted sheet resistance values of W02 with analytical calculation of R_B [7]

$$I_E$$
 = 5um I_E = 10um

$$R_{silw} = 0.3\Omega$$
 $R_{silw} = 0.2\Omega$

$$R_{sild} = 1.9\Omega$$
 $R_{sild} = 1.9\Omega$

$$R_{silp} = 1.4\Omega$$
 $R_{silp} = 1.4\Omega$

$$R_{lc} = 433\Omega$$
 $R_{lc} = 433\Omega$

$$R_{lw} = 4.1\Omega$$
 $R_{lw} = 2.0\Omega$

$$R_{BI} = 4.1\Omega$$
 $R_{BI} = 2.0\Omega$

$$R_{Bx} = 4.4\Omega$$
 $R_{Bx} = 2.2\Omega$


good agreement with device simulation

Conclusion •

- intrinsic base sheet resistance R_{SBiO} increasing with device generation and process improvements for high speed
 - · extraction of extrinsic contributions far from origin hence prone to failure
- further investigation of impact of msmt accuracy and process scalability on existing extraction methods
 - · appropriate structure already gives good results, what can be improved
- further improvement of extraction methods for more robust flow
 - to be tested: automatic correction of geometrical information (esp. w_E) using dispersion of measured data from regression analysis to overcome scaling issues
- a special thanks goes to P. Chevalier and E. Canderle for providing the process split wafers

Thank you for your attention!

Literature

- [1] H. M. Rein, M. Schroter, "Experimental determination of the internal base sheet resistance of bipolar transistors under forward-bias conditions", Solid-State Electron., vol. 34, no. 3, pp. 301–308, 1991.
- [2] C. Raya et al., "Scalable Approach for HBT's Base Resistance Calculation", IEEE Transactions on Semiconductor Manufacturing, vol. 21, pp. 186-194, 2008.
- [3] M. Schroter, "DEVICE, A Mixed Mode Simulator for Three-Dimensional Heterostructure Semiconductor Devices and Circuits", 2006.
- [4] W. M. C. Sansen and R. G. Meyer, "Characterization and measurement of the base and emitter resistance of bipolar transistors," IEEE J. Solid-State Circuits, No. 6, pp. 492-498, 1972.
- [5] T. Nakadai, Hashimoto, K., "Measuring the base resistance of bipolar transistors", Proc. BCTM 1991, pp. 200-203, 1991.

Literature 29

- [6] W.J. Kloosterman, J.C.J. Paasechens and D.B.M Klaassen, "Improved Extraction of Base and Emitter Resistance from Small-Signal High-Frequency Admittance Measurements", BCTM, pp. 93-96, 1998.
- [7] M. Schroter, J. Krause, S. Lehmann and D. Celi, "Compact Layout and Bias-Dependent Base-Resistance Modeling for Advanced SiGe HBTs", IEEE Trans. on Electron Dev., vol 55, pp. 1693 -1701, 2008.

